TLS handshake for Linux kernel
consumers

A High-level Overview

Chuck Lever - October 2023



Acknowledgements

« Jamal Hadi Salim and the NetDev 0x17 program committee
» Jakub Kicinski and the netdev maintainers and community

* My friends and colleagues on kernel-tls-handshake@



Presenter’s Biography

* Nearly a quarter century working on the Linux NFS implementation
* Author or co-author of numerous NFS-related IETF RFCs
 Co-maintainer of NFSD (the Linux kernel NFS server)

 Before that, extensive focus on NFS/RDMA

* But only peripheral computer security experience



In Scope

* The facility described in this presentation is already in mainline Linux

¢« See commit 3b3009ea8abb (“net/handshake: Create a NETLINK service for
handling handshake requests”) [4/23]

 Which kernel consumers want TLS and why (our use cases)
» Alternative approaches to providing TLS handshakes in-kernel

 Thoughts on the use of TPM, NIC offload, keyrings, and other technologies



Out Of Scope

* User space applications cannot directly see or use this new facility, since they
already have access to TLS handshake mechanisms via libraries

* |I’m not going to perform a demo today
o Still no user authentication with x.509 certificates

 Our handshake mechanism will never officially support TLS versions older
than TLS v1.3



Our Initial In-Kernel Use Cases

 SUNRPC with TLS

« RFC 9289 Towards Remote Procedure Call Encryption by Default [9/22]
 NVMe on TCP with TLS

 NVM Express TCP Transport Specification 1.0c [10/22]
* QUICVT

« RFC 9000 QUIC: A UDP-based Multiplexed and Secure Transport [5/21]



Sidebar: RPC-with-TLS

 RPC already has GSSAPI, why does it need TLS too?
 GSS Kerberos has heavyweight infrastructure requirements
 TLS is now a commodity technology (web, email, etc)

 (GSS Kerberos encryption cannot easily be offloaded (key-per-user versus
key-per-host)

 TLS gets new encryption algorithms more quickly than Kerberos does

 TLS encryption can be enabled with a single server-side certificate, which can
enable better security for deployments that wish to continue using AUTH_SYS

14



The Benefits of kTLS

* Existing KTLS implements the TLS Record protocol in the kernel. Each
endpoint looks like a regular network socket.

 Without much modification, kernel KTLS consumers can utilize either:
* A software TLS implementation based on the kernel’s crypto

* A hardware TLS implementation provided in the NIC

* Jo initialize the session, first a handshake must optionally authenticate,
negotiate a session key, and select encryption and MAC algorithms



Alternative Approaches

 Grow an in-kernel TLS handshake implementation

 Run a full user space library in a protected middle layer
 Pass open sockets to a user space library

e accept(?)

e call_usermodehelper

e netlink



The Selected Approach

* A new netlink protocol was constructed for passing an open file descriptor to
uUser space

A new daemon was created that waits for these fds, passes them to a library
(GNUTLS), then sets kKTLS socket options with the negotiated results

* A kernel consumer can open a socket and probe for TLS support. Then:

 The new handshake mechanism dups that socket and passes the dup’d fd
up to the daemon

* The kernel consumer sleeps while waiting for the handshake result

10



Netlink Protocol

 READY (kernel -> multicast group)

e |ndicates an in-kernel consumer wants a handshake

« ACCEPT (user space -> kernel)

 Takes an MC group, and returns a socket descriptor and handshake
parameters. Agent can then perform a TLS handshake on the socket.

» DONE (user space -> kernel)

 The agent has either primed a socket for use with kTLS, or the handshake
falled

11



Managing Authentication Material

o Certificates, PSKs, CA bundles, and private keys are typically stored in files
 The ULP has to select and provide the material,
 The handshake agent can have suitable default material,
 The kernel or handshake agent can retrieve the material from a TPM, or

 The ULP or kernel can copy the material into a long-lived keyring

12



Keyrings

» Although tlshd reads default authentication material from files, upper layer
protocols can provide material in keys

» tlshd checks its process group keyring, and possibly other keyrings

 ULPs can pass key serial numbers for PSKs, x.509 certificates, and private
keys

 Some of these can be long-lived

13



Future Work

o Support for DTLS is planned but not started
e Support for QUIC is under way (see slide 6)

* Support for session re-key has been proposed for KTLS; planned for the
netlink protocol and tlshd, but not started

* Support for storing certs in TPM is planned but not started

* Tackling TLS protection for root filesystem resources is still being discussed

14



Component Availability

A TLS handshake user agent (tlshd) is part of ktls-utils

o Upstream is https://github.com/oracle/ktls-utils
» ktls-utils has been packaged for Fedora, SuSe, and Debian

 The kernel handshake APl was merged in v6.4, along with server-side SunRPC and
NFSD support for RPC-with-TLS

e Client-side SUnRPC and NFS client support is in v6.5
* NVMe with TLS is coming soon (patches are under review)

* |In-kernel QUIC prototype: https://github.com/Ixin/quic

15


https://github.com/oracle/ktls-utils

AMA & Discussion



